Beginner
10 min

Craft temperature data via advanced thermoelectric technology using MCP9600 and STM32F031K6

Revolutionize temperature sensing with thermoelectric innovation

Thermo J Click with Nucleo 32 with STM32F031K6 MCU

Published Oct 01, 2024

Click board™

Thermo J Click

Dev. board

Nucleo 32 with STM32F031K6 MCU

Compiler

NECTO Studio

MCU

STM32F031K6

Our solution leverages thermoelectric principles to deliver accurate temperature measurements, ensuring the utmost precision in every application

A

A

Hardware Overview

How does it work?

Thermo J Click is based on the MCP9600, a thermocouple EMF to temperature converter from Microchip with 1.5°C of maximum accuracy. The onboard PCC-SMP-J connector ensures a secure connection and accurate readings for the connected thermocouple. hermo J click utilizes the thermoelectric principles for measuring the temperature. When the thermocouple joint, made of two different conductive materials, is exposed to a measuring temperature (hot end), a potential difference will be generated at the open ends of the circuit (cold end). The generated electromotive force (EMF) at the open ends of the circuit can be measured and converted into a digital form, by the 18-bit delta-sigma AD converter section of the MCP9600 IC. To obtain the desired measurement

of the temperature, the cold end temperature needs to be known, too. Since the MCP9600 features an integrated measurement of the ambient temperature (cold junction compensation), error corrected value can be read directly from the registers, using the I2C bus protocol. The generated EMF depends on the materials that are used for the thermocouples.Those materials are standardized and categorized by types. This click uses the type-J thermocouples, composed of iron and constantan. The measuring range of this device for the type J probes, is from -150°C to 1200°C, but it depends on the used probes. Thermo J click uses a specially constructed PPC-SMP-J onboard connector for easy and secure thermocouple connection. There

are four ALERT lines present on the MCP9600. Those lines can  be programmed by the I2C to be set to a HIGH logic level when certain temperature thresholds are reached. The lines are routed to the AN, RST, PWM and INT pins of the mikroBUS™. The I2C address can be selected with the ADDR SEL onboard SMD jumper. The I2C address can be changed by this jumper, allowing for more than one of these click boards to be used on a system, each with the different I2C address. The click board™ can be set to work with both 3.3V or 5V, selectable from the mikroBUS™. This can be done by the onboard SMD jumper, labeled as PWR SEL. This allows for this click board™ to be used on a wide range of different MCUs, both 3.3V and 5V tolerant.

Thermo J Click hardware overview image

Features overview

Development board

Nucleo 32 with STM32F031K6 MCU board provides an affordable and flexible platform for experimenting with STM32 microcontrollers in 32-pin packages. Featuring Arduino™ Nano connectivity, it allows easy expansion with specialized shields, while being mbed-enabled for seamless integration with online resources. The

board includes an on-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration with three interfaces: Virtual Com port, mass storage, and debug port. It offers a flexible power supply through either USB VBUS or an external source. Additionally, it includes three LEDs (LD1 for USB communication, LD2 for power,

and LD3 as a user LED) and a reset push button. The STM32 Nucleo-32 board is supported by various Integrated Development Environments (IDEs) such as IAR™, Keil®, and GCC-based IDEs like AC6 SW4STM32, making it a versatile tool for developers.

Nucleo 32 with STM32F031K6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

32

Silicon Vendor

STMicroelectronics

Pin count

32

RAM (Bytes)

4096

You complete me!

Accessories

Click Shield for Nucleo-32 is the perfect way to expand your development board's functionalities with STM32 Nucleo-32 pinout. The Click Shield for Nucleo-32 provides two mikroBUS™ sockets to add any functionality from our ever-growing range of Click boards™. We are fully stocked with everything, from sensors and WiFi transceivers to motor control and audio amplifiers. The Click Shield for Nucleo-32 is compatible with the STM32 Nucleo-32 board, providing an affordable and flexible way for users to try out new ideas and quickly create prototypes with any STM32 microcontrollers, choosing from the various combinations of performance, power consumption, and features. The STM32 Nucleo-32 boards do not require any separate probe as they integrate the ST-LINK/V2-1 debugger/programmer and come with the STM32 comprehensive software HAL library and various packaged software examples. This development platform provides users with an effortless and common way to combine the STM32 Nucleo-32 footprint compatible board with their favorite Click boards™ in their upcoming projects.

Click Shield for Nucleo-32 accessories 1 image

This Type-J thermocouple is an ideal choice for accurately measuring high temperatures. This thermocouple boasts a maximum temperature measurement capability of 480°C (900°F), making it suitable for various applications. Measuring 2 meters in length and featuring a 24 AWG gage wire with a 0.51mm diameter, it offers installation flexibility. The thermocouple is equipped with glass braid insulation, ensuring durability and reliability. It terminates with a PCC-SMP connector, simplifying integration into various setups. Additionally, it has a high-temperature tolerance of up to 220°C (425°F) for the connector body, further enhancing its versatility. With its Type-J calibration, this thermocouple is a valuable tool for industries and processes requiring precise temperature measurements, guaranteeing accuracy and longevity even in demanding environments.

Thermo J Click accessories image

Used MCU Pins

mikroBUS™ mapper

Alert Output 4
PA0
AN
Alert Output 3
PA11
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Alert Output 2
PA8
PWM
Alert Output 1
PA12
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB6
SCL
I2C Data
PB7
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Thermo J Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-144 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 32 with STM32F031K6 MCU as your development board.

Click Shield for Nucleo-144 front image hardware assembly
Nucleo 144 with STM32L4A6ZG MCU front image hardware assembly
Stepper 22 Click front image hardware assembly
Prog-cut hardware assembly
Stepper 22 Click complete accessories setup image hardware assembly
Nucleo-32 with STM32 MCU Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
STM32 M4 Clicker HA MCU/Select Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Thermo J Click driver.

Key functions:

  • thermoj_check_data_ready - Check the status of data ready function.

  • thermoj_set_thermocouple_type - Set thermocouple type sensor configuration function.

  • thermoj_get_temperature - Get temperature function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief ThermoJ Click example
 * 
 * # Description
 * This app measured temperature.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initialization device.
 * 
 * ## Application Task  
 * This is a example which demonstrates the use of Thermo J Click board.
 * Measured temperature data from the MCP9600 sensor on Thermo J Click board.
 * Results are being sent to the Usart Terminal where you can track their changes.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "thermoj.h"

// ------------------------------------------------------------------ VARIABLES

static thermoj_t thermoj;
static log_t logger;
static uint8_t check_data_ready;
static float temperature;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    thermoj_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    thermoj_cfg_setup( &cfg );
    THERMOJ_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thermoj_init( &thermoj, &cfg );

    log_printf( &logger, "---------------------------\r\n" );
    log_printf( &logger, "      Thermo J  Click      \r\n" );
    log_printf( &logger, "---------------------------\r\n" );
    
    log_printf( &logger, " Set thermocouple type:  J \r\n" );

    thermoj_set_thermocouple_type( &thermoj, THERMOJ_THERMOCOUPLE_TYPE_J );
    Delay_ms ( 1000 );

    log_printf( &logger, "---------------------------\r\n" );
}

void application_task ( void )
{
    check_data_ready =  thermoj_check_data_ready( &thermoj );

    if ( check_data_ready )
    {
        temperature = thermoj_get_temperature( &thermoj );

        log_printf( &logger, " Temperature : %.2f Celsius\r\n", temperature );
        log_printf( &logger, "---------------------------\r\n" );

        Delay_ms ( 1000 );
   }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.