Empower your projects with the versatility and precision of our current limiting solution, providing dynamic current management for improved safety, energy efficiency, and reliability
A
A
Hardware Overview
How does it work?
Current Limit 7 Click is based on the MAX14575A, a programmable current-limit switch featuring internal current limiting to prevent damage to host devices due to faulty load conditions from Analog Devices. The MAX14575A offers flexible protection boundaries for systems against input voltage ranging from 2.3V to 5.5V. It limits the output load current to a programmed level, up to 2.5A, making this device ideal for charging a large load capacitor and high-current load switching applications. Additional safety features include thermal shutdown protection to prevent overheating and reverse current blocking to prevent current from being driven back into the source. The current-limit switch provides a safe means for regulating the current delivered to a load circuit. It increases the load current to a programmed limit but no higher. Typically, the
current limit is a function of the voltage across an external resistor, and this voltage serves as the reference for an internal current-limiting amplifier. By replacing the resistor with a digital rheostat, you can easily program the current limit as performed on this Click board™. For this purpose, the AD5272 from Analog Devices, communicating with the MCU via a 2-wire I2C interface, is used to set the resistance on the MAX14575A SETI pin, adjusting the current limit for the switch. In this case, two rheostats were combined with an onboard switch labeled as RANGE, allowing the user to use two possible current limit ranges: from 0.5A to 2.5A and 0.25A to 0.5A. Current Limit 7 Click can be turned on, or off through the EN pin routed to the CS pin of the mikroBUS™ socket, hence offering a switch operation to turn ON/OFF power delivery to the connected load. It also provides an
overcurrent flag (FLG) indication signal routed to the INT pin of the mikroBUS™ socket and an additional reset signal for AD5272 digital rheostat routed to the RST pin of the mikroBUS™ socket. This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the VCC SEL jumper. It allows both 3.3V and 5V capable MCUs to use the communication lines properly. Additionally, there is a possibility for the MAX14575A power supply selection via jumper labeled as PWR SEL to supply the MAX14575A from an external power supply terminal in the range from 2.3V to 5.5V or with VCC voltage levels from mikroBUS™ power rails. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.
Features overview
Development board
Nucleo-64 with STM32G474R MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin
headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is
provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.
Microcontroller Overview
MCU Card / MCU

Architecture
ARM Cortex-M4
MCU Memory (KB)
512
Silicon Vendor
STMicroelectronics
Pin count
64
RAM (Bytes)
128k
You complete me!
Accessories
Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Software Support
Library Description
This library contains API for Current Limit 7 Click driver.
Key functions:
currentlimit7_set_current_limit- Current Limit 7 set current limit functioncurrentlimit7_set_resistance- Current Limit 7 set resistance functioncurrentlimit7_get_fault- Current Limit 7 get fault function
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* @file main.c
* @brief CurrentLimit7 Click example
*
* # Description
* This library contains API for the Current Limit 7 Click driver.
* This driver provides the functions to set the current limiting conditions
* in order to provide the threshold of the fault conditions.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initialization of I2C module and log UART.
* After driver initialization, default settings turn on the device.
*
* ## Application Task
* This example demonstrates the use of the Current Limit 7 Click board™.
* Reading user's input from Usart Terminal and using it as an index
* for an array of pre-calculated values that define the current limit level.
* Results are being sent to the Usart Terminal, where you can track their changes.
*
* ## Additional Function
* - static void display_selection ( void )
*
* @author Nenad Filipovic
*
*/
#include "board.h"
#include "log.h"
#include "currentlimit7.h"
static currentlimit7_t currentlimit7;
static log_t logger;
// #define CURRENTLIMIT_MODE_250_mA_500_mA
#define CURRENTLIMIT_MODE_500_mA_2500_mA
const uint16_t limit_value_op[ 14 ] =
{
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_510_mA,
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_625_mA,
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_860_mA,
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_1320_mA,
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_1450_mA,
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_1550_mA,
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_1750_mA,
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_2020_mA,
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_2260_mA,
CURRENTLIMIT7_OP_1_CURRENT_LIMIT_2500_mA,
CURRENTLIMIT7_OP_0_CURRENT_LIMIT_260_mA,
CURRENTLIMIT7_OP_0_CURRENT_LIMIT_280_mA,
CURRENTLIMIT7_OP_0_CURRENT_LIMIT_330_mA,
CURRENTLIMIT7_OP_0_CURRENT_LIMIT_450_mA
};
static void display_selection ( void )
{
log_printf( &logger, " To select current limit \r\n" );
log_printf( &logger, " Send one of the numbers: \r\n" );
log_printf( &logger, "- - - - - - - - - - - - - -\r\n" );
#ifdef CURRENTLIMIT_MODE_250_mA_500_mA
log_printf( &logger, " '0' - Limited to 260 mA \r\n" );
log_printf( &logger, " '1' - Limited to 280 mA \r\n" );
log_printf( &logger, " '2' - Limited to 330 mA \r\n" );
log_printf( &logger, " '3' - Limited to 450 mA \r\n" );
#else
log_printf( &logger, " '0' - Limited to 510 mA \r\n" );
log_printf( &logger, " '1' - Limited to 625 mA \r\n" );
log_printf( &logger, " '2' - Limited to 860 mA \r\n" );
log_printf( &logger, " '3' - Limited to 1320 mA \r\n" );
log_printf( &logger, " '4' - Limited to 1450 mA \r\n" );
log_printf( &logger, " '5' - Limited to 1550 mA \r\n" );
log_printf( &logger, " '6' - Limited to 1750 mA \r\n" );
log_printf( &logger, " '7' - Limited to 2020 mA \r\n" );
log_printf( &logger, " '8' - Limited to 2260 mA \r\n" );
log_printf( &logger, " '9' - Limited to 2500 mA \r\n" );
#endif
log_printf( &logger, "---------------------------\r\n" );
}
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
currentlimit7_cfg_t currentlimit7_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
currentlimit7_cfg_setup( ¤tlimit7_cfg );
CURRENTLIMIT7_MAP_MIKROBUS( currentlimit7_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == currentlimit7_init( ¤tlimit7, ¤tlimit7_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( CURRENTLIMIT7_ERROR == currentlimit7_default_cfg ( ¤tlimit7 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
log_printf( &logger, "---------------------------\r\n" );
log_printf( &logger, " Current Limit 7 Click \r\n" );
log_printf( &logger, "---------------------------\r\n" );
Delay_ms ( 100 );
#ifdef CURRENTLIMIT_MODE_250_mA_500_mA
currentlimit7_set_current_limit ( ¤tlimit7, CURRENTLIMIT7_OP_MODE_250_mA_500_mA, limit_value_op[ 10 ] );
log_printf( &logger, " >>> Selected mode %d \r\n", 0 );
log_printf( &logger, "- - - - - - - - - - - - - -\r\n" );
log_printf( &logger, " Current limit is %d mA \r\n", limit_value_op[ 10 ] );
log_printf( &logger, "---------------------------\r\n" );
Delay_ms ( 100 );
#else
currentlimit7_set_current_limit ( ¤tlimit7, CURRENTLIMIT7_OP_MODE_500_mA_2500_mA, limit_value_op[ 0 ] );
log_printf( &logger, " >>> Selected mode %d \r\n", 0 );
log_printf( &logger, "- - - - - - - - - - - - - -\r\n" );
log_printf( &logger, " Current limit is %d mA \r\n", limit_value_op[ 0 ] );
log_printf( &logger, "---------------------------\r\n" );
Delay_ms ( 100 );
#endif
display_selection( );
Delay_ms ( 100 );
}
void application_task ( void )
{
static char index;
if ( CURRENTLIMIT7_ERROR != log_read( &logger, &index, 1 ) )
{
#ifdef CURRENTLIMIT_MODE_250_mA_500_mA
if ( ( index >= '0' ) && ( index <= '3' ) )
{
currentlimit7_set_current_limit ( ¤tlimit7, CURRENTLIMIT7_OP_MODE_250_mA_500_mA, limit_value_op[ index - 38 ] );
log_printf( &logger, " >>> Selected mode %d \r\n", index - 48 );
log_printf( &logger, "- - - - - - - - - - - - - -\r\n" );
log_printf( &logger, " Current limit is %d mA \r\n", limit_value_op[ index - 38 ] );
log_printf( &logger, "---------------------------\r\n" );
Delay_ms ( 100 );
}
#else
if ( ( index >= '0' ) && ( index <= '9' ) )
{
currentlimit7_set_current_limit ( ¤tlimit7, CURRENTLIMIT7_OP_MODE_500_mA_2500_mA, limit_value_op[ index - 48 ] );
log_printf( &logger, " >>> Selected mode %d \r\n", index - 48 );
log_printf( &logger, "- - - - - - - - - - - - - -\r\n" );
log_printf( &logger, " Current limit is %d mA \r\n", limit_value_op[ index - 48 ] );
log_printf( &logger, "---------------------------\r\n" );
Delay_ms ( 100 );
}
#endif
else
{
log_printf( &logger, " Data not in range! \r\n" );
log_printf( &logger, "---------------------------\r\n" );
display_selection( );
Delay_ms ( 100 );
}
}
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
// ------------------------------------------------------------------------ END
Additional Support
Resources
Category:Power Switch

































