Intermediate
30 min

Step into a new era of current sensing with INA282 and MSP432P401R

Bidirectional current sensing evolved

Current 7 Click with Fusion for Tiva v8

Published Aug 13, 2023

Click board™

Current 7 Click

Dev Board

Fusion for Tiva v8

Compiler

NECTO Studio

MCU

MSP432P401R

Unleash the potential of accurate bidirectional current sensing with our solution, engineered to go beyond simple measurements. Empower your systems with the ability to monitor, analyze, and optimize power usage in both directions for unprecedented control.

A

A

Hardware Overview

How does it work?

Current 7 Click is based on the INA381, a high-accuracy current-sensing amplifier from Texas Instruments. This voltage output current-sensing amplifier accurately measures voltages developed across the current-sensing resistor (also known as a current-shunt resistor) at a common-mode range that extends 14V below the negative supply rail as up to 80V, allowing for either low-side or high-side current sensing. The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as 70μV over a wide temperature range. This Click board™ possesses two ways to communicate with the MCU. The analog output signal of the INA282 can be converted to a digital value using MCP3221, a successive approximation A/D converter with a 12-bit resolution from Microchip using a 2-wire I2C

compatible interface, or can be sent directly to an analog pin of the mikroBUS™ socket labeled as AN. The MCP3221 provides one single-ended input with low power consumption, a low maximum conversion current, and a Standby current of 250μA and 1μA, respectively. Data can be transferred at up to 100kbit/s in the Standard and 400kbit/s in the Fast Mode. Selection can be performed by onboard SMD jumper labeled as OUT SEL, setting it to an appropriate position marked as AN and ADC. The INA282 also allows a connection of external voltage signals on the onboard headers labeled REF1 and REF2 for the device’s reference voltage. This reference voltage determines how the output responds to certain input conditions. The configurable settings of the reference voltage control resistors, R5 and R6, allow the INA282 to

be used in unidirectional and bi-directional applications. More information about these operational modes can be found in the attached datasheet. This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the VCC SEL jumper. It allows both 3.3V and 5V capable MCUs to use the communication lines properly. Additionally, there is a possibility for the INA282 power supply selection via jumper labeled as PWR SEL to supply the INA282 from an external power supply terminal in the range from 2.7V to 18V or with mikroBUS™ power rails. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Current 7 Click hardware overview image
Current 7 Click Current Warning image

Features overview

Development board

Fusion for TIVA v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different 32-bit ARM® Cortex®-M based MCUs from Texas Instruments, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over a WiFi network. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for TIVA v8 provides a fluid and immersive working experience, allowing access

anywhere and under any circumstances at any time. Each part of the Fusion for TIVA v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for TIVA v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for Tiva v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

256

Silicon Vendor

Texas Instruments

Pin count

100

RAM (Bytes)

65536

Used MCU Pins

mikroBUS™ mapper

Analog Output
P6.0
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
P3.7
SCL
I2C Data
P3.6
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Current 7 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for Tiva v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
v8 SiBRAIN Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for Current 7 Click driver.

Key functions:

  • current7_read_voltage - This function reads raw ADC value and converts it to proportional voltage level

  • current7_get_current - This function reads the input current level [A] based on CURRENT7_NUM_CONVERSIONS of voltage measurements

  • current7_set_vref - This function sets the voltage reference for Current 7 Click driver

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Current7 Click example
 *
 * # Description
 * This library contains API for Current 7 Click driver.
 * The demo application reads current ( A ).
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes I2C or AN driver and log UART.
 *
 * ## Application Task
 * This is an example that demonstrates the use of the Current 7 Click board™.
 * In this example, we read and display the current ( A ) data.
 * Results are being sent to the Usart Terminal where you can track their changes.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "current7.h"

static current7_t current7;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;            /**< Logger config object. */
    current7_cfg_t current7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    current7_cfg_setup( &current7_cfg );
    CURRENT7_MAP_MIKROBUS( current7_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == current7_init( &current7, &current7_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    float current = 0;
    current7_get_current( &current7, &current );
    log_printf( &logger, " Current : %.3f A\r\n", current );
    log_printf( &logger, "--------------------\r\n" );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END
/*!
 * @file main.c
 * @brief Current7 Click example
 *
 * # Description
 * This library contains API for Current 7 Click driver.
 * The demo application reads current ( A ).
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes I2C or AN driver and log UART.
 *
 * ## Application Task
 * This is an example that demonstrates the use of the Current 7 Click board™.
 * In this example, we read and display the current ( A ) data.
 * Results are being sent to the Usart Terminal where you can track their changes.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "current7.h"

static current7_t current7;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;            /**< Logger config object. */
    current7_cfg_t current7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    current7_cfg_setup( &current7_cfg );
    CURRENT7_MAP_MIKROBUS( current7_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == current7_init( &current7, &current7_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    float current = 0;
    current7_get_current( &current7, &current );
    log_printf( &logger, " Current : %.3f A\r\n", current );
    log_printf( &logger, "--------------------\r\n" );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.