Beginner
10 min

Enhance system performance with high-speed flash storage using IS25LP128 and TM4C129ENCPDT

Embrace the future with flash storage

Flash 3 Click with Fusion for Tiva v8

Published Aug 25, 2023

Click board™

Flash 3 Click

Dev. board

Fusion for Tiva v8

Compiler

NECTO Studio

MCU

TM4C129ENCPDT

Employ flash memory to boost overall system responsiveness and application loading times

A

A

Hardware Overview

How does it work?

Flash 3 Click is based on the IS25LP128, a serial Flash memory with 133MHz multi I/O SPI & quad I/O QPI DTR interfaces from Integrated Silicon Solution. This Flash memory chip supports Serial Flash Discoverable Parameters (SFDP), selectable dummy cycles, SPI modes 0 and 3, and configurable drive strength. The flexible and efficient memory architecture allows chip erase with uniform sector/block erase (4/32/64 KB) and program/erase suspend and resume. The read and program modes consist of low instruction overhead operations, continuous read 8/16/32/64-byte burst wrap, selectable burst length,

and more. There are software and hardware protections, power supply lock protection, a 4x256-byte dedicated security area with OTP user-lockable bits, and the 128-bit Unique ID for each device. The Flash 3 Click communicates with the host MCU through an industry-standard SPI serial interface, supporting the two most common SPI modes, SPI Mode 0 and 3, with a maximum frequency of 133MHz in Fast Read mode. The Flash 3 Click features write-protect ability over the WP pin, with active LOW. The HLD pin is a communication hold pin, and the Flash memory can stay in a hold state with logic LOW, in which

time the device is paused without resetting the serial sequence. The CE pin turns the device’s operation on and off on this Click board™, pulled high for normal operation. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.

Flash 3 Click top side image
Flash 3 Click bottom side image

Features overview

Development board

Fusion for TIVA v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different 32-bit ARM® Cortex®-M based MCUs from Texas Instruments, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over a WiFi network. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for TIVA v8 provides a fluid and immersive working experience, allowing access

anywhere and under any circumstances at any time. Each part of the Fusion for TIVA v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for TIVA v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for Tiva v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

Texas Instruments

Pin count

128

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Data Transfer Pause
PK3
RST
SPI Chip Select
PH0
CS
SPI Clock
PQ0
SCK
SPI Data OUT
PQ3
MISO
SPI Data IN
PQ2
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Write Protect
PL4
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Flash 3 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for Tiva v8 as your development board.

Fusion for PIC v8 front image hardware assembly
Buck 22 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
v8 SiBRAIN MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Flash 3 Click driver.

Key functions:

  • flash3_pause - Pause function

  • flash3_unpause - Unpause function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Flash3 Click example
 * 
 * # Description
 * This applicaion adding more flash memory.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initalizes device, Flash 3 click board and makes an initial log.
 * 
 * ## Application Task  
 * This is an example that shows the capabilities of the Flash 3 click by
   writing into memory array of a Flash 3 click board and reading same data from memory array.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "flash3.h"

// ------------------------------------------------------------------ VARIABLES

static flash3_t flash3;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    flash3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    flash3_cfg_setup( &cfg );
    FLASH3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flash3_init( &flash3, &cfg );

    Delay_ms( 100 );
    log_printf( &logger, "------------------- \r\n" );
    log_printf( &logger, "  Flash  3  Click  \r\n" );
    log_printf( &logger, "-------------------\r\n" );
    flash3_setting( &flash3 );
    Delay_ms( 100 );
    log_printf( &logger, "   Initialized     \r\n" );
    log_printf( &logger, "------------------- \r\n" );
}

void application_task ( void )
{
    char val_in[ 8 ] = { 0x4D, 0x49, 0x4B, 0x52, 0x4F, 0x45, 0x00 };
    char val_out[ 8 ] = { 0 };

    log_printf( &logger, "\r\n ____________________ \r\n" );
    log_printf( &logger, "Begin demonstration! \r\n\r\n" );
    
    
    log_printf( &logger, "Writing : %s\r\n", val_in );
    flash3_write( &flash3, 0x000000, &val_in[ 0 ], 6 );
    Delay_ms( 100 );
    log_printf( &logger, "------------------ \r\n" );

    log_printf( &logger, "Reading : %s\r\n", val_in );
    flash3_normal_read( &flash3, 0x000000, &val_in[ 0 ], 6 );
    Delay_ms( 100 );
    log_printf( &logger, "------------------ \r\n" );

    log_printf( &logger, "Erasing... \r\n" );
    flash3_sector_erase( &flash3, 0x000000 );
    Delay_ms( 300 );
    log_printf( &logger, "Erased!" );
    Delay_ms( 100 );
    log_printf( &logger, "------------------ \r\n"  );

    log_printf( &logger, "Reading : %s\r\n", val_out );
    flash3_fast_read( &flash3, 0x000000, &val_out[ 0 ], 6 );
    Delay_ms( 100 );
    log_printf( &logger, "------------------ \r\n" );

    log_printf( &logger, "Demonstration over!" );
    log_printf( &logger, "\r\n ___________________ \r\n" );
    Delay_ms( 5000 );
    
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.