Precise monitoring and control of both AC and DC currents, suitable for a wide range of applications where accurate current measurement and safety are crucial
A
A
Hardware Overview
How does it work?
Current Sens 2 Click is based on the HO 10-P, an AC/DC current transducer from LEM USA. The HO 10-P is well-known for measuring DC, AC, and pulse currents up to 10ARMS with galvanic isolation between the primary and secondary circuits. With its core built on the open-loop Hall effect measuring principle, the Current Sens 2 Click ensures precise and reliable current measurements. Its capability covers a variety of industrial applications, including AC variable speed drives, UPS systems, SMPS, and power supplies for welding, which benefit from low power consumption and high immunity to external interference. The device's fast response time suits dynamic and demanding environments. The HO 10-P is designed for through-hole PCB mounting and features a sizable aperture (8x8mm) for the primary
conductor, ensuring easy integration and versatility. Although the sensor can measure current up to 10A, its sensitivity can be altered in three specific scenarios. When current is applied to the input, for instance, pin 6, and the output is obtained from pin 11, the sensor's sensitivity becomes x1. This configuration is considered as the wire being wound only once around the sensor's core, marking the first scenario. In another configuration, short-circuiting pins 7 and 10 while keeping the input and output on pins 6 and 11 doubles the sensitivity (x2). Similarly, sensitivity triples (x3) when pins 7-10 and 8-9 are short-circuited, maintaining the input and output on pins 6 and 11. Maintaining a straight signal path from the input to the output is crucial, as depicted in the schematic (6-11, 7-10, 8-9). It's also possible to measure the conductor's current by
pulling it through the sensor's core and allowing current to flow through it. The sensor is powered by the 5V mikroBUS™ power rail and outputs the sensed current as an analog signal through the AN pin. Additionally, an orange LED and a dedicated pin (OCD) on the mikroBUS™ socket signal an overcurrent condition, providing enhanced safety and monitoring features. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Features overview
Development board
UNI Clicker is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It supports a wide range of microcontrollers, such as different ARM, PIC32, dsPIC, PIC, and AVR from various vendors like Microchip, ST, NXP, and TI (regardless of their number of pins), four mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a debugger/programmer connector, and two 26-pin headers for interfacing with external electronics. Thanks to innovative manufacturing technology, it allows you to build
gadgets with unique functionalities and features quickly. Each part of the UNI Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the UNI Clicker programming method, using a third-party programmer or CODEGRIP/mikroProg connected to onboard JTAG/SWD header, the UNI Clicker board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Type-C (USB-C) connector, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or using a Li-Po/Li
Ion battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board (plus USB HOST/DEVICE), including the well-established mikroBUS™ socket, a standardized socket for the MCU card (SiBRAIN standard), and several user-configurable buttons and LED indicators. UNI Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.
Microcontroller Overview
MCU Card / MCU

Type
8th Generation
Architecture
ARM (32-bit)
MCU Memory (KB)
256
Silicon Vendor
NXP
Pin count
64
RAM (Bytes)
32768
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for Current Sens 2 Click driver.
Key functions:
currentsens2_get_int_pin
- Current Sens 2 get int pin state functioncurrentsens2_tare
- Current Sens 2 tare functioncurrentsens2_get_current
- Current Sens 2 read current function
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* @file main.c
* @brief Current Sens 2 Click Example.
*
* # Description
* This example demonstrates the use of Current Sens 2 Click board by reading and
* displaying the input current measurements.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes the driver and logger.
*
* ## Application Task
* Reads the input current measurements and displays the results on the USB UART
* approximately once per second.
*
* @author Stefan Ilic
*
*/
#include "board.h"
#include "log.h"
#include "currentsens2.h"
static currentsens2_t currentsens2; /**< Current Sens 2 Click driver object. */
static log_t logger; /**< Logger object. */
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
currentsens2_cfg_t currentsens2_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
currentsens2_cfg_setup( ¤tsens2_cfg );
CURRENTSENS2_MAP_MIKROBUS( currentsens2_cfg, MIKROBUS_1 );
if ( ADC_ERROR == currentsens2_init( ¤tsens2, ¤tsens2_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
log_printf( &logger, " Remove Click from the electrical circuit \r\n" );
Delay_ms ( 1000 );
if ( CURRENTSENS2_ERROR == currentsens2_tare ( ¤tsens2 ) )
{
log_error( &logger, " Click tare error." );
for ( ; ; );
}
currentsens2_set_prim_turn_no( ¤tsens2, CURRENTSENS2_NUM_OF_PASSES_1 );
log_printf( &logger, " Connect Click to the electrical circuit \r\n" );
log_info( &logger, " Application Task " );
}
void application_task ( void )
{
float current = 0;
if ( CURRENTSENS2_OK == currentsens2_get_current ( ¤tsens2, ¤t ) )
{
log_printf( &logger, " Current : %.2f[A]\r\n\n", current );
Delay_ms ( 1000 );
}
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
// ------------------------------------------------------------------------ END