Intermediate
30 min

Optimize your systems, enhance safety, and achieve reliability with MAX17608 and ATmega328P

Empowering innovation, one Amp at a time

Current Limit 6 Click with Arduino UNO Rev3

Published Feb 14, 2024

Click board™

Current Limit 6 Click

Dev. board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328P

Our current limiting solution is engineered to revolutionize safety and efficiency, offering precise control over current to ensure optimal performance while safeguarding your systems against overloads

A

A

Hardware Overview

How does it work?

Current Limit 6 Click is based on the MAX17608, a current-limiting device with an adjustable overvoltage and overcurrent protection feature from Analog Devices. The MAX17608 offers flexible protection boundaries for systems against input voltage ranging from 4.5V to 60V and limits the output load current to a programmed level (up to 1A). The devices also feature two internal MOSFETs connected in series, with a low cumulative RON of 260mΩ typical. Input undervoltage protection can be programmed between 4.5V and 59V, while the overvoltage protection can be independently programmed between 5.5V and 60V (default Click board™ configuration is 4.5V for UVLO and 14V for OVLO). Additionally, the MAX17608 has an internal default undervoltage lockout set at 4V typical. The current-limit switch is virtually ubiquitous in system control and provides a safe means for regulating the current delivered to a load circuit. It increases the load current to a programmed limit but no higher. Typically, the current limit is a

function of the voltage across an external resistor, and this voltage serves as the reference for an internal current-limiting amplifier. Replacing the resistor with a digital potentiometer allows you to program the current limit as performed on this Click board™. For this purpose, the digital potentiometer MAX5401 from Analog Devices, which communicates with the MCU via a 3-wire SPI serial interface, is used to set the resistance on the MAX17608 SETI pin, adjusting the current limit for the switch between 0.1A to 1 A. This current limiter offers several operational modes, selectable through a populated jumper labeled as R11 connected to the CLMD pin of the MAX17608. In a default configuration, this pin is connected to the ground, representing the Continuous mode of operation. When R11 is replaced with a 150kΩ resistor, this Click board™ is in the Latch-off mode, and when the user leaves this pin unconnected, Autoretry mode of operation is activated. More information on the operational modes

can be found in the attached datasheet. Current Limit 6 Click can be turned on, or off through the EN pin routed to the PWM pin of the mikroBUS™ socket, hence offering a switch operation to turn ON/OFF power delivery to the connected load. It also provides communication signals routed to the INT and AN pins of the mikroBUS™ socket, alongside its LED indicators, labeled ER1 and ER2, to indicate different operational and fault signals, such as FLAG and UVOV signals. Besides, the MAX17608 also offers internal thermal shutdown protection against excessive power dissipation. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Current Limit 6 Click hardware overview image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

UVLO/OVLO Indicator
PC0
AN
NC
NC
RST
SPI Chip Select
PB2
CS
SPI Clock
PB5
SCK
NC
NC
MISO
SPI Data IN
PB3
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Enable
PD6
PWM
Fault Interrupt
PC3
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Current Limit 6 Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Charger 27 Click front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Board mapper by product8 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Current Limit 6 Click driver.

Key functions:

  • currentlimit6_set_current_limit - Current Limit 6 set current limit function

  • currentlimit6_power_mode - Current Limit 6 power mode function

  • currentlimit6_check_limit_exceeded - Current Limit 6 check limit exceeded function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief CurrentLimit6 Click example
 *
 * # Description
 * This library contains API for the Current Limit 6 Click driver.
 * This driver provides the functions to set the current limiting conditions 
 * in order to provide the threshold of the fault conditions.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization of SPI module and log UART.
 * After driver initialization, default settings turn on the device.
 *
 * ## Application Task
 * This example demonstrates the use of the Current Limit 6 Click board™.
 * Reading user's input from Usart Terminal and using it as an index 
 * for an array of pre-calculated values that define the current limit level.
 * Results are being sent to the Usart Terminal, where you can track their changes.
 *
 * ## Additional Function
 * - static void display_selection ( void )
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "currentlimit6.h"

static currentlimit6_t currentlimit6;
static log_t logger;
const float limit_value[ 9 ] = { 0.100, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700, 0.800, 0.999 };

static void display_selection ( void ) 
{
    log_printf( &logger, " To select current limit  \r\n" );
    log_printf( &logger, " Send one of the numbers: \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - - \r\n" );
    log_printf( &logger, " '1' - Limited to 100 mA  \r\n" );
    log_printf( &logger, " '2' - Limited to 200 mA  \r\n" );
    log_printf( &logger, " '3' - Limited to 300 mA  \r\n" );
    log_printf( &logger, " '4' - Limited to 400 mA  \r\n" );
    log_printf( &logger, " '5' - Limited to 500 mA  \r\n" );
    log_printf( &logger, " '6' - Limited to 600 mA  \r\n" );
    log_printf( &logger, " '7' - Limited to 700 mA  \r\n" );
    log_printf( &logger, " '8' - Limited to 800 mA  \r\n" );
    log_printf( &logger, " '9' - Limited to 999 mA  \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
}

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    currentlimit6_cfg_t currentlimit6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    currentlimit6_cfg_setup( &currentlimit6_cfg );
    CURRENTLIMIT6_MAP_MIKROBUS( currentlimit6_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == currentlimit6_init( &currentlimit6, &currentlimit6_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( CURRENTLIMIT6_ERROR == currentlimit6_default_cfg ( &currentlimit6 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "  Current Limit 6 Click  \r\n" );
    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    Delay_ms ( 100 );
    
    display_selection( );
    Delay_ms ( 100 );
}

void application_task ( void )
{ 
    static char index;
    
    if ( log_read( &logger, &index, 1 ) != CURRENTLIMIT6_ERROR ) 
    {
        if ( ( index >= '1' ) && ( index <= '9' ) ) 
        {
            currentlimit6_set_current_limit ( &currentlimit6, limit_value[ index - 49 ] );
            log_printf( &logger, "  >>> Selected mode %d     \r\n", index - 48 );
            log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
            log_printf( &logger, " Current limit is %.3f A \r\n", limit_value[ index - 49 ] );
            log_printf( &logger, "--------------------------\r\n" );
            Delay_ms ( 100 );
        } 
        else 
        { 
            log_printf( &logger, "    Data not in range!    \r\n" );
            log_printf( &logger, "--------------------------\r\n" );
            display_selection( );
            Delay_ms ( 100 );
        }
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.