Intermediate
30 min

Optimize processes and workflows with accurate distance measurements provided by VL53L0X and ATmega328P

Measure distances with high precision and reliability

LightRanger 2 Click with Arduino UNO Rev3

Published Feb 14, 2024

Click board™

LightRanger 2 Click

Dev. board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328P

Drive innovation in various fields by integrating gesture recognition and ranging capabilities

A

A

Hardware Overview

How does it work?

LightRanger 2 Click is based on the VL53L0X, the world’s smallest Time-of-Flight (ToF) ranging and gesture detection sensor from STMicroelectronics. The VL53L0X integrates a leading-edge SPAD array (Single Photon Avalanche Diodes) and embeds ST’s second generation FlightSense™ patented technology. FlightSense™ technology measures the time it takes for a photon to reach the nearest object. The photon travel time is multiplied by the speed of light, and a distance is calculated from there. The photon travel time is not affected by reflectance, and this kind of technology is immune to ambient illumination and optical path variations. The VL53L0X’s 940nm VCSEL emitter (Vertical Cavity Surface-Emitting Laser) is invisible to the human eye, and coupled with internal physical infrared filters, it enables longer ranging distance, higher immunity to ambient light

and better robustness to cover-glass optical cross-talk. The VL53L0X has three ranging modes. The Single-ranging mode is performed only once after the function is called. The Continuous ranging mode is performed continuously, and as soon as the measurement is finished, another one is started without delay. The time-ranging mode is the same as the Continuous mode, with a user-defined delay between measurements. LightRanger 2 Click uses a standard 2-Wire I2C serial interface to communicate with the host MCU, supporting speeds up to 400kbit/s. The data can be obtained by polling the sensor over the I2C interface or by an interrupt feature when the sensor sends the interrupt over the INT pin to the host when a new measurement is available. There is an EN pin to turn the sensor ON or OFF. As this Click board™ can work on both the 3.3V and the

5V logic level devices, it features a few logic level translators. For I2C interface logic level translation, the LightRanger 2 Click uses the PCA9306, a dual bidirectional I2C bus and SMBus voltage-level translator from Texas Instruments. For additional enable and interrupt pins, this Click board™ uses a couple of SN74LVC1T45s, single-bit dual-supply bus transceivers with configurable voltage translation, and 3-state outputs from Texas Instruments. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the LOGIC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

LightRanger 2 Click top side image
LightRanger 2 Click bottom side image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Enable
PD2
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PC3
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC5
SCL
I2C Data
PC4
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

LightRanger 2 Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Charger 27 Click front image hardware assembly
Prog-cut hardware assembly
Board mapper by product8 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for LightRanger 2 Click driver.

Key functions:

  • lightranger2_write_byte - This function writes a byte of data to the targeted 8-bit register

  • lightranger2_read_bytes - This function reads a sequential data starting from the targeted 8-bit register

  • lightranger2_get_range_continuous - This function gets a range measurement in millimeters when continuous mode is active

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief LightRanger2 Click example
 * 
 * # Description
 * This example collects data from the sensor, calculates it, and then logs the 
 * results.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initialization driver,
 * enable Vl6180X sensor, hardware reset and sets default configuration of
 * Vl6180X, also write log.
 * 
 * ## Application Task  
 * This is a example which demonstrates the use of LightRanger 2 Click board.
 * Measures the distance of the object from the sensor.
 * Results are being sent to the Usart Terminal where you can track their changes.
 * All data logs on usb uart for aproximetly every 1 sec when the data value changes.
 * 

 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "lightranger2.h"

// ------------------------------------------------------------------ VARIABLES

static lightranger2_t lightranger2;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    lightranger2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    lightranger2_cfg_setup( &cfg );
    LIGHTRANGER2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lightranger2_init( &lightranger2, &cfg );
    lightranger2_default_cfg( &lightranger2 );
    
    lightranger2_start_continuous( &lightranger2, 0 );
    Delay_ms ( 100 );
}

void application_task ( void )
{
    uint16_t distance;
    
    distance = lightranger2_get_range_continuous( &lightranger2 );
    Delay_ms ( 10 );
    
    if ( distance )
    {
        log_printf( &logger, "Distance: %u mm \r\n", distance );
        Delay_ms ( 100 );
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.