Beginner
10 min

Experience seamless multitasking and quick data processing with 23LC1024 and ATmega328P

Highly reliable nonvolatile memory

SRAM Click with Arduino UNO Rev3

Published Feb 14, 2024

Click board™

SRAM Click

Dev. board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328P

Whether it's in networking, embedded systems, or consumer electronics, SRAM memory solutions drive performance to new heights

A

A

Hardware Overview

How does it work?

SRAM Click is based on the 23LC1024, a highly reliable 1Mbit Serial SRAM designed to interface directly with Microchip's Serial Peripheral Interface (SPI). The 23LC1024 is organized as 128k words of 8 bits each and provides fast access alongside infinite read and write cycles to the memory array. The embedded nonvolatile elements incorporate the CMOS technology, making this Click board™ an ideal choice for secure data storage, creating the world's most reliable nonvolatile memory. The serial SRAM has three modes of operation, byte, page, and sequential, which are chosen by setting bits in the MODE register. In Byte mode, the R/W operations are limited to only one byte,

while in Page mode, R/W operations are limited to within the addressed page. The last Sequential mode allows the entire array to be written to and read from. The 23LC1024 communicates with MCU through a standard SPI interface that enables very high clock speeds up to 20MHz with zero cycle delay read and write cycles. It may also interface with MCUs that do not have a built-in SPI port by using discrete I/O lines programmed properly in firmware to match the SPI protocol. In addition, the 23LC1024 can operate in SDI and SQI modes. In the SDI mode, the SI and SO data lines are bidirectional, allowing the transfer of two bits per clock pulse, while in the SQI mode, two additional

data lines enable the transfer of four bits per clock pulse. The SRAM Click also has an additional HOLD signal, routed to the RST pin of the mikroBUS™ socket labeled as HLD, used to suspend the serial communication without resetting the serial sequence. This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the PWR SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

SRAM Click hardware overview image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Data Transfer Pause
PD2
RST
SPI Chip Select
PB2
CS
SPI Clock
PB5
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB3
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

SRAM Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Charger 27 Click front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Board mapper by product8 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Software Support

Library Description

This library contains API for SRAM Click driver.

Key functions:

  • sram_write_byte - Function write the 8-bit data to the target 24-bit register address of 23LC1024

  • sram_read_byte - Function read the 8-bit data to the target 24-bit register address of 23LC1024

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Sram Click example
 * 
 * # Description
 * SRAM Click presents additional 1Mbit SRAM memory that can be added to device.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Application Init performs Logger and Click initialization.
 * 
 * ## Application Task  
 * SRAM Click communicates with register via SPI protocol by write data to and read data from 23LC1024 Serial RAM device. 
 * Results are being sent to the UART where you can track their changes. 
 * All data logs on USB UART for aproximetly every 1 sec.
 * 
 * \author Mihajlo Djordjevic
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "sram.h"

char send_buffer[ 17 ] = { 'm', 'i', 'k', 'r', 'o', 'E', 'l', 'e', 'k', 't', 'r', 'o', 'n', 'i', 'k', 'a', ' ' };
char mem_data[ 17 ];
uint8_t n_cnt;

// ------------------------------------------------------------------ VARIABLES

static sram_t sram;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    sram_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    sram_cfg_setup( &cfg );
    SRAM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    sram_init( &sram, &cfg );
    
    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " ------ SRAM Click  ----- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
}

void application_task ( void )
{
    log_printf( &logger, " Writing text :\r\n" );
   
    for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
    {
        sram_write_byte( &sram, n_cnt, send_buffer[ n_cnt ] );
        Delay_ms ( 100 );
        
        log_printf( &logger, "%c", send_buffer[ n_cnt ] );

        mem_data[ n_cnt ] = sram_read_byte( &sram, n_cnt );
    }
    
    
    log_printf( &logger, "\r\n" );
    log_printf( &logger, " Read text :\r\n" );
    for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
    {
        mem_data[ n_cnt ] = sram_read_byte( &sram, n_cnt );
        Delay_ms ( 100 );
        log_printf( &logger, "%c", mem_data[ n_cnt ] );
    }
    log_printf( &logger, "\r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.