Beginner
10 min

Streamline the operation of complex systems with MC74HC165A and STM32F091RC

Simplify your control: 16 buttons, 1 masterpiece

4x4 Key Click with Nucleo-64 with STM32F091RC MCU

Published Feb 26, 2024

Click board™

4x4 Key Click

Dev. board

Nucleo-64 with STM32F091RC MCU

Compiler

NECTO Studio

MCU

STM32F091RC

Maximize space and functionality by choosing our 16-in-1 button integration solution for your control needs

A

A

Hardware Overview

How does it work?

4x4 Key Click is based on 16 buttons with debounce circuits and two MC74HC165A, 8-bit parallel-in/serial-out shift registers from ON Semiconductor. The rightmost column of the keyboard is marked with letters from A to D, while the other 12 buttons are marked like a telephone keypad, so it is easy to implement this 4x4 Click board to any design. The 16-button output lines go straight to the parallel data inputs of the two shift registers connected in a serial (daisy) chain, thus

occupying fewer pins on the host MCU. The shift registers allow you to press all 16 buttons simultaneously, and each will be registered. The 4X4 Click board uses an SPI serial interface to communicate with the host MCU over the mikroBUS™ socket. In this case, the SPI interface saves as many IO pins of the MCU as possible from 16 buttons using shift registers. The Clock Enable pins of the shift registers are not user-configurable and are tied LOW; thus, shift registers are always

enabled. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the PWR SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

4x4 Key Click hardware overview image

Features overview

Development board

Nucleo-64 with STM32F091RC MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32F091RC MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

256

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

32768

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
PB12
CS
SPI Clock
PB3
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

4x4 Key Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo-64 with STM32F091RC MCU as your development board.

Click Shield for Nucleo-64 accessories 1 image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
LTE IoT 5 Click front image hardware assembly
Prog-cut hardware assembly
Board mapper by product8 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Software Support

Library Description

This library contains API for 4x4 Key Click driver.

Key functions:

  • c4x4key_get_data - Get 16-bit data function.

  • c4x4key_get_btn_position - Get position pressed button function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief 4x4Key Click example
 * 
 * # Description
 * The library covers all the necessary functions to control the 4x4 Key Click.
 * 4x4 Key Click communicates with the target board via SPI interface. 
 * This library contains drivers for reading data from a sensor and get 
 * the position of the pressed button.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Configuring Clicks and log objects.
 * 
 * ## Application Task  
 * This is a example which demonstrates the use of 4x4 Key Click board.
 * Detects and logs whether any of the buttons is pressed.
 * Results are being sent to the Usart Terminal
 * where you can track their changes.
 * All data logs on usb uart when the button is triggered.
 * 
 * \author Nenad Filipovic
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "c4x4key.h"

// ------------------------------------------------------------------ VARIABLES

static c4x4key_t c4x4key;
static log_t logger;

static uint16_t btn_data_old;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    c4x4key_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c4x4key_cfg_setup( &cfg );
    C4X4KEY_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c4x4key_init( &c4x4key, &cfg );
    
    btn_data_old = 0;
    
    log_printf( &logger, "   4x4 Key Click\r\n" );
    log_printf( &logger, "--------------------\r\n" );
    log_printf( &logger, "  Press any button\r\n" );
    log_printf( &logger, "--------------------\r\n" );
}

void application_task ( void )
{
    uint16_t btn_data;
    
    btn_data = c4x4key_get_data( &c4x4key );

    if ( btn_data_old != btn_data )
    {
        if ( btn_data == C4X4KEY_BUTTON_0 )
        {
            log_printf( &logger, "         0\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_1 )
        {
            log_printf( &logger, "         1\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_2 )
        {
            log_printf( &logger, "         2\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_3 )
        {
            log_printf( &logger, "         3\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_4 )
        {
            log_printf( &logger, "         4\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_5 )
        {
            log_printf( &logger, "         5\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_6 )
        {
            log_printf( &logger, "         6\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_7 )
        {
            log_printf( &logger, "         7\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_8 )
        {
            log_printf( &logger, "         8\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_9 )
        {
            log_printf( &logger, "         9\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_A )
        {
            log_printf( &logger, "         A\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_B )
        {
            log_printf( &logger, "         B\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_C )
        {
            log_printf( &logger, "         C\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_D )
        {
            log_printf( &logger, "         D\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_STAR )
        {
            log_printf( &logger, "         *\r\n" );
        }
        
        if ( btn_data == C4X4KEY_BUTTON_HASH )
        {
            log_printf( &logger, "         #\r\n" );
        }

        btn_data_old = btn_data;
    }
    Delay_10ms();
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.