Intermediate
30 min

Enable non-contact rotary measurements in harsh environments using AS5601 and STM32F103RB

Precision positioning: Elevate your control with magnetic sensing

Magneto 8 Click with Nucleo 64 with STM32F103RB MCU

Published Oct 08, 2024

Click board™

Magneto 8 Click

Dev Board

Nucleo 64 with STM32F103RB MCU

Compiler

NECTO Studio

MCU

STM32F103RB

Upgrade your solution capabilities by integrating magnetic position sensing, opening up possibilities for innovative applications like smart locks, thermostats, and more, with reliable position feedback

A

A

Hardware Overview

How does it work?

Magneto 8 Click is based on the AS5601, 12-bit programmable contactless encoder IC from AMS-AG. The AS5601 is a Hall-based rotary magnetic position encoder that converts the magnetic field component vertical to the surface of the chip into a voltage, which is used to produce incremental A/B outputs and absolute position indication. The analog signals from the Hall sensor are first amplified and filtered (before being converted by the ADC into binary data). Then, they are processed by the CORDIC block to compute the angle and magnitude of the magnetic field vector. The internal logic uses the angle values provided by the CORDIC algorithm to generate the incremental quadrature signals A and B. Additionally, the AS5601 implements a pushbutton detection function that indicates sudden

airgap changes between the AS5601 and magnet and drives the PUSH output pin high when the AS5601 detects a fast increase of the magnetic field and vice versa. The AS5601 communicates with MCU using the standard I2C 2-Wire interface with a maximum SCL frequency of 1 MHz. The I2C communication interface supports several different modes. In addition to the modes such as Standard, Fast, and Fast-Plus mode, there are three additional modes: Random/Sequential read, Byte/Page write, and Automatic increment relating to the ANGLE register. The AS5601 can be powered from a 5V supply using the on-chip LDO regulator, or it can be powered directly from a 3.3V supply. The selection can be done by positioning SMD jumpers labeled as VCC SEL to an appropriate position. In this case, there are

two voltage selection jumpers because the power pins of the AS5601 require a different configuration in the case of 3.3V and 5V power supply. In 5V operation, the second power pin must be connected to the ground via a decoupling capacitor C2. Otherwise, in 3.3V operation, the two pins must be tied together. Note that all the jumpers must be placed on the same side, or the Click board™ may become unresponsive. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Magneto 8 Click top side image
Magneto 8 Click bottom side image

Features overview

Development board

Nucleo-64 with STM32F103RB MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32F103RB MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M3

MCU Memory (KB)

128

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

20480

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Incremental Signal A
PC12
RST
Incremental Signal B
PB12
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Pushbutton Output
PC14
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB8
SCL
I2C Data
PB9
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Magneto 8 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 64 with STM32F103RB MCU as your development board.

Click Shield for Nucleo-64 accessories 1 image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
LTE IoT 5 Click front image hardware assembly
Prog-cut hardware assembly
Nucleo-64 with STM32XXX MCU Access MB 1 Mini B Conn - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for Magneto 8 Click driver.

Key functions:

  • magneto8_get_magnitude - Gets magnitude data

  • magneto8_get_angle_data - Gets Angle data

  • magneto8_psh_pin_state - Gets PSH pin state

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Magneto8 Click example
 * 
 * # Description
 * This example demonstrates the use of Magneto 8 Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver and applies the click default configuration.
 * 
 * ## Application Task  
 * Reads angle and magnitude data and displays it on the USB UART every 500ms.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "magneto8.h"

// ------------------------------------------------------------------ VARIABLES

static magneto8_t magneto8;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    magneto8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    magneto8_cfg_setup( &cfg );
    MAGNETO8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    magneto8_init( &magneto8, &cfg );

    magneto8_default_cfg( &magneto8 );
    log_printf( &logger, "--- Configuration done ---- \r\n" );
    Delay_ms ( 500 );
}

void application_task ( void )
{
    float angle;
    uint16_t mag;

    mag  = magneto8_get_magnitude( &magneto8 );
    log_printf( &logger, "Magnitude: %d \r\n", mag );
    
    angle = magneto8_get_angle_data( &magneto8 );
    log_printf( &logger, "Angle : %.1f deg\r\n", angle );

    log_printf( &logger, "---------------------- \r\n" );
    Delay_ms ( 500 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END
/*!
 * \file 
 * \brief Magneto8 Click example
 * 
 * # Description
 * This example demonstrates the use of Magneto 8 Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver and applies the click default configuration.
 * 
 * ## Application Task  
 * Reads angle and magnitude data and displays it on the USB UART every 500ms.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "magneto8.h"

// ------------------------------------------------------------------ VARIABLES

static magneto8_t magneto8;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    magneto8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    magneto8_cfg_setup( &cfg );
    MAGNETO8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    magneto8_init( &magneto8, &cfg );

    magneto8_default_cfg( &magneto8 );
    log_printf( &logger, "--- Configuration done ---- \r\n" );
    Delay_ms ( 500 );
}

void application_task ( void )
{
    float angle;
    uint16_t mag;

    mag  = magneto8_get_magnitude( &magneto8 );
    log_printf( &logger, "Magnitude: %d \r\n", mag );
    
    angle = magneto8_get_angle_data( &magneto8 );
    log_printf( &logger, "Angle : %.1f deg\r\n", angle );

    log_printf( &logger, "---------------------- \r\n" );
    Delay_ms ( 500 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END
/*!
 * \file 
 * \brief Magneto8 Click example
 * 
 * # Description
 * This example demonstrates the use of Magneto 8 Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver and applies the click default configuration.
 * 
 * ## Application Task  
 * Reads angle and magnitude data and displays it on the USB UART every 500ms.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "magneto8.h"

// ------------------------------------------------------------------ VARIABLES

static magneto8_t magneto8;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    magneto8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    magneto8_cfg_setup( &cfg );
    MAGNETO8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    magneto8_init( &magneto8, &cfg );

    magneto8_default_cfg( &magneto8 );
    log_printf( &logger, "--- Configuration done ---- \r\n" );
    Delay_ms ( 500 );
}

void application_task ( void )
{
    float angle;
    uint16_t mag;

    mag  = magneto8_get_magnitude( &magneto8 );
    log_printf( &logger, "Magnitude: %d \r\n", mag );
    
    angle = magneto8_get_angle_data( &magneto8 );
    log_printf( &logger, "Angle : %.1f deg\r\n", angle );

    log_printf( &logger, "---------------------- \r\n" );
    Delay_ms ( 500 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END
/*!
 * \file 
 * \brief Magneto8 Click example
 * 
 * # Description
 * This example demonstrates the use of Magneto 8 Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver and applies the click default configuration.
 * 
 * ## Application Task  
 * Reads angle and magnitude data and displays it on the USB UART every 500ms.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "magneto8.h"

// ------------------------------------------------------------------ VARIABLES

static magneto8_t magneto8;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    magneto8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    magneto8_cfg_setup( &cfg );
    MAGNETO8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    magneto8_init( &magneto8, &cfg );

    magneto8_default_cfg( &magneto8 );
    log_printf( &logger, "--- Configuration done ---- \r\n" );
    Delay_ms ( 500 );
}

void application_task ( void )
{
    float angle;
    uint16_t mag;

    mag  = magneto8_get_magnitude( &magneto8 );
    log_printf( &logger, "Magnitude: %d \r\n", mag );
    
    angle = magneto8_get_angle_data( &magneto8 );
    log_printf( &logger, "Angle : %.1f deg\r\n", angle );

    log_printf( &logger, "---------------------- \r\n" );
    Delay_ms ( 500 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.