Our solution leverages thermoelectric principles to deliver accurate temperature measurements, ensuring the utmost precision in every application
A
A
Hardware Overview
How does it work?
Thermo J Click is based on the MCP9600, a thermocouple EMF to temperature converter from Microchip with 1.5°C of maximum accuracy. The onboard PCC-SMP-J connector ensures a secure connection and accurate readings for the connected thermocouple. hermo J click utilizes the thermoelectric principles for measuring the temperature. When the thermocouple joint, made of two different conductive materials, is exposed to a measuring temperature (hot end), a potential difference will be generated at the open ends of the circuit (cold end). The generated electromotive force (EMF) at the open ends of the circuit can be measured and converted into a digital form, by the 18-bit delta-sigma AD converter section of the MCP9600 IC. To obtain the desired measurement
of the temperature, the cold end temperature needs to be known, too. Since the MCP9600 features an integrated measurement of the ambient temperature (cold junction compensation), error corrected value can be read directly from the registers, using the I2C bus protocol. The generated EMF depends on the materials that are used for the thermocouples.Those materials are standardized and categorized by types. This click uses the type-J thermocouples, composed of iron and constantan. The measuring range of this device for the type J probes, is from -150°C to 1200°C, but it depends on the used probes. Thermo J click uses a specially constructed PPC-SMP-J onboard connector for easy and secure thermocouple connection. There
are four ALERT lines present on the MCP9600. Those lines can be programmed by the I2C to be set to a HIGH logic level when certain temperature thresholds are reached. The lines are routed to the AN, RST, PWM and INT pins of the mikroBUS™. The I2C address can be selected with the ADDR SEL onboard SMD jumper. The I2C address can be changed by this jumper, allowing for more than one of these click boards to be used on a system, each with the different I2C address. The click board™ can be set to work with both 3.3V or 5V, selectable from the mikroBUS™. This can be done by the onboard SMD jumper, labeled as PWR SEL. This allows for this click board™ to be used on a wide range of different MCUs, both 3.3V and 5V tolerant.
Features overview
Development board
PIC32MZ Clicker is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller with FPU from Microchip, a USB connector, LED indicators, buttons, a mikroProg connector, and a header for interfacing with external electronics. Thanks to its compact design with clear and easy-recognizable silkscreen markings, it provides a fluid and immersive working experience, allowing access anywhere and under
any circumstances. Each part of the PIC32MZ Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the PIC32MZ Clicker programming method, using USB HID mikroBootloader, or through an external mikroProg connector for PIC, dsPIC, or PIC32 programmer, the Clicker board also includes a clean and regulated power supply module for the development kit. The USB Micro-B connection can provide up to 500mA of current, which is more than enough to operate all onboard
and additional modules. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several buttons and LED indicators. PIC32MZ Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.
Microcontroller Overview
MCU Card / MCU

Architecture
PIC32
MCU Memory (KB)
1024
Silicon Vendor
Microchip
Pin count
64
RAM (Bytes)
524288
You complete me!
Accessories
This Type-J thermocouple is an ideal choice for accurately measuring high temperatures. This thermocouple boasts a maximum temperature measurement capability of 480°C (900°F), making it suitable for various applications. Measuring 2 meters in length and featuring a 24 AWG gage wire with a 0.51mm diameter, it offers installation flexibility. The thermocouple is equipped with glass braid insulation, ensuring durability and reliability. It terminates with a PCC-SMP connector, simplifying integration into various setups. Additionally, it has a high-temperature tolerance of up to 220°C (425°F) for the connector body, further enhancing its versatility. With its Type-J calibration, this thermocouple is a valuable tool for industries and processes requiring precise temperature measurements, guaranteeing accuracy and longevity even in demanding environments.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for Thermo J Click driver.
Key functions:
thermoj_check_data_ready
- Check the status of data ready function.thermoj_set_thermocouple_type
- Set thermocouple type sensor configuration function.thermoj_get_temperature
- Get temperature function.
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* \file
* \brief ThermoJ Click example
*
* # Description
* This app measured temperature.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initialization device.
*
* ## Application Task
* This is a example which demonstrates the use of Thermo J Click board.
* Measured temperature data from the MCP9600 sensor on Thermo J click board.
* Results are being sent to the Usart Terminal where you can track their changes.
*
* \author MikroE Team
*
*/
// ------------------------------------------------------------------- INCLUDES
#include "board.h"
#include "log.h"
#include "thermoj.h"
// ------------------------------------------------------------------ VARIABLES
static thermoj_t thermoj;
static log_t logger;
static uint8_t check_data_ready;
static float temperature;
// ------------------------------------------------------ APPLICATION FUNCTIONS
void application_init ( void )
{
log_cfg_t log_cfg;
thermoj_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
thermoj_cfg_setup( &cfg );
THERMOJ_MAP_MIKROBUS( cfg, MIKROBUS_1 );
thermoj_init( &thermoj, &cfg );
log_printf( &logger, "---------------------------\r\n" );
log_printf( &logger, " Thermo J Click \r\n" );
log_printf( &logger, "---------------------------\r\n" );
log_printf( &logger, " Set thermocouple type: J \r\n" );
thermoj_set_thermocouple_type( &thermoj, THERMOJ_THERMOCOUPLE_TYPE_J );
Delay_ms( 1000 );
log_printf( &logger, "---------------------------\r\n" );
}
void application_task ( void )
{
check_data_ready = thermoj_check_data_ready( &thermoj );
if ( check_data_ready )
{
temperature = thermoj_get_temperature( &thermoj );
log_printf( &logger, " Temperature : %.2f Celsius\r\n", temperature );
log_printf( &logger, "---------------------------\r\n" );
Delay_ms( 1000 );
}
}
void main ( void )
{
application_init( );
for ( ; ; )
{
application_task( );
}
}
// ------------------------------------------------------------------------ END