Beginner
10 min

Keep critical information readily available and secure with CY14B101PA and PIC32MZ1024EFH064

Data persistence perfected: The nvSRAM promise

nvSRAM 4 Click with PIC32MZ clicker

Published Oct 28, 2023

Click board™

nvSRAM 4 Click

Dev. board

PIC32MZ clicker

Compiler

NECTO Studio

MCU

PIC32MZ1024EFH064

Experience the perfect harmony of performance and peace of mind with nvSRAM, the ultimate memory solution for critical applications

A

A

Hardware Overview

How does it work?

nvSRAM 4 Click is based on the CY14B101PA, a 1-Mbit nvSRAM memory organized as 128K words of 8 bits each, with a fully-featured real-time clock from Infineon. The nvSRAM specifies one million endurance cycles for nonvolatile cells with data retention of a minimum of 20 years. All the reads and writes to nvSRAM happen to the SRAM, which gives nvSRAM the unique capability to handle infinite writes to the memory. The benefit of nvSRAM over serial EEPROMs is that all reads and writes to nvSRAM are performed at the SPI speed with zero cycle delay, which means, therefore, no wait time is required after any of the memory accesses. In addition to the CY14B101PA, this Click board™ is equipped with the button cell battery holder compatible with the 3000TR battery holder, suitable for 12mm Coin Cell batteries. When the primary power fails and drops below 2.65V, this Click board™ switches to the backup power supply by placing a jumper labeled as RTC-BATT. By utilizing an automatic backup, the CY14B101PA uses an external battery power source when there is no power supply on its main power terminals, allowing for uninterrupted operation. nvSRAM 4

Click communicates with MCU using a standard SPI interface with clock frequency up to 40MHz, zero cycle delay read, and write cycles. It also supports the two most common modes, SPI Mode 0 and 3, and 104 MHz SPI access speed with special instructions for the read operation. The CY14B101PA uses the standard SPI opcodes for memory access. In addition to the general SPI instructions for reading and writing, it provides four special instructions: STORE, RECALL, AutoStore Disable (ASDISB), and AutoStore Enable (ASENB). The STORE operation of the CY14B101PA can be controlled and acknowledged via the HSB pin, routed on the RST pin of the mikroBUS™ socket. If no STORE/RECALL is in progress, this pin can request a hardware STORE cycle. When the HSB pin is driven LOW, the CY14B101PA initiates a STORE operation conditionally. Also, this Click board™ can use the AutoStore feature of the SRAM data in nonvolatile cells when the power goes down, providing power-down data security by placing a jumper labeled as RTC-CAP. An additional feature of this Click board™ represents the configurable Write Protection function labeled

as WP routed on the PWM pin of the mikroBUS™ socket. The WP pin protects the entire memory and all registers from write operations and must be held high to inhibit all the write operations. When this pin is high, all memory and register writes are prohibited, and the address counter is not incremented. Besides, the nvSRAM 4 Click also has additional HOLD and Interrupt pins, routed to the AN and INT pins of the mikroBUS™ socket labeled as HLD and INT. The HLD pin is used to pause the serial communication without stopping the operation of the write status register, programming, or erasing in progress. On the other hand, an INT pin can be used in several ways, such as interrupt output, calibration, or a square wave, programmable to respond to the clock alarm, the watchdog timer, and the power monitor. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

nvSRAM 4 Click hardware overview image

Features overview

Development board

PIC32MZ Clicker is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller with FPU from Microchip, a USB connector, LED indicators, buttons, a mikroProg connector, and a header for interfacing with external electronics. Thanks to its compact design with clear and easy-recognizable silkscreen markings, it provides a fluid and immersive working experience, allowing access anywhere and under

any circumstances. Each part of the PIC32MZ Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the PIC32MZ Clicker programming method, using USB HID mikroBootloader, or through an external mikroProg connector for PIC, dsPIC, or PIC32 programmer, the Clicker board also includes a clean and regulated power supply module for the development kit. The USB Micro-B connection can provide up to 500mA of current, which is more than enough to operate all onboard

and additional modules. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several buttons and LED indicators. PIC32MZ Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

PIC32MZ clicker double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

1024

Silicon Vendor

Microchip

Pin count

64

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

Data Transfer Pause
RE4
AN
STORE Operation Control
RE5
RST
SPI Chip Select
RG9
CS
SPI Clock
RG6
SCK
SPI Data OUT
RG7
MISO
SPI Data IN
RG8
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Write Protect
RB3
PWM
Interrupt
RB5
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

nvSRAM 4 Click Schematic schematic

Step by step

Project assembly

PIC32MZ clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the PIC32MZ clicker as your development board.

PIC32MZ clicker front image hardware assembly
Thermo 26 Click front image hardware assembly
Prog-cut hardware assembly
Micro B Connector clicker - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for nvSRAM 4 Click driver.

Key functions:

  • nvsram4_burst_read_memory - nvSRAM 4 burst read memory function.

  • nvsram4_burst_write_memory - nvSRAM 4 burst write memory function.

  • nvsram4_get_rtc_time - nvSRAM 4 get RTC time function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief nvSRAM4 Click example
 *
 * # Description
 * This is an example that demonstrates the use of the nvSRAM 4 click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization driver enables - SPI, 
 * write demo_data string ( mikroE ), starting from the selected memory_addr ( 112233 ), 
 * set the time to 12:30:31 and set the date to 31-12-20.
 *
 * ## Application Task
 * In this example, we read a data string, which we have previously written to memory, 
 * starting from the selected memory_addr ( 112233 ) 
 * and read and display the current time and date, which we also previously set.
 * Results are being sent to the Usart Terminal where you can track their changes.
 * All data logs write on USB uart changes for every 1 sec.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "nvsram4.h"

static nvsram4_t nvsram4;
static log_t logger;

static char demo_data[ 9 ] = { 'm', 'i', 'k', 'r', 'o', 'E', 13 ,10 , 0 };
static char rx_data[ 9 ];
static uint32_t memory_addr;
static uint8_t new_sec = 255;
static uint8_t c_year = 20;

static nvsram4_rtc_time_t time;
static nvsram4_rtc_date_t date;

void application_init ( void ) {
    log_cfg_t log_cfg;          /**< Logger config object. */
    nvsram4_cfg_t nvsram4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "\r\n" );
    log_info( &logger, " Application Init " );

    // Click initialization.

    nvsram4_cfg_setup( &nvsram4_cfg );
    NVSRAM4_MAP_MIKROBUS( nvsram4_cfg, MIKROBUS_1 );
    err_t init_flag  = nvsram4_init( &nvsram4, &nvsram4_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    nvsram4_default_cfg ( &nvsram4 );
    Delay_ms( 100 );
    log_info( &logger, " Application Task " );
    
    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "     nvSRAM 4 click    \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    
    memory_addr = 112233;
    
    nvsram4_set_cmd( &nvsram4, NVSRAM4_STATUS_WREN );
    Delay_ms( 100 );
    
    log_printf( &logger, "  Write data : %s", demo_data );
    nvsram4_burst_write_memory( &nvsram4, memory_addr, &demo_data[ 0 ], 9 );
    log_printf( &logger, "-----------------------\r\n" );
    Delay_ms( 1000 );
    
    date.day_of_week = 4;
    date.day = 31;
    date.month = 12;
    date.year = 20;
    nvsram4_set_rtc_date( &nvsram4, date );
    Delay_ms( 100 );
    
    time.hours = 23;
    time.min = 59;
    time.sec = 50;
    nvsram4_set_rtc_time( &nvsram4, time );
    Delay_ms( 100 );
}

void application_task ( void ) {
    nvsram4_get_rtc_time( &nvsram4, &time );
    Delay_ms( 1 );
    nvsram4_get_rtc_date( &nvsram4, &date );
    Delay_ms( 1 );
    
    if ( time.sec != new_sec ) {
        log_printf( &logger, "  Date      : %.2d-%.2d-%.2d\r\n", ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
        log_printf( &logger, "  Time      : %.2d:%.2d:%.2d\r\n", ( uint16_t ) time.hours, ( uint16_t ) time.min, ( uint16_t ) time.sec );
        log_printf( &logger, "- - - - - - - - - - - -\r\n" );
        new_sec = time.sec;
        Delay_ms( 10 );
        
        if ( date.year != c_year ) {
            log_printf( &logger, "     Happy New Year    \r\n" );
            c_year = date.year;
            Delay_ms( 10 );
        } else {
            nvsram4_burst_read_memory( &nvsram4, memory_addr, &rx_data[ 0 ], 9 );
            log_printf( &logger, "  Read data : %s", rx_data );    
        }
               
        log_printf( &logger, "-----------------------\r\n" );
    } else {
        Delay_ms( 1 );    
    }
}

void main ( void ) {
    application_init( );

    for ( ; ; ) {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.