Intermediate
30 min

Unlock balanced power with TPS65131 and PIC18LF45K50

From minus to plus

Boost-INV 2 Click with EasyPIC v8

Published Jul 19, 2023

Click board™

Boost-INV 2 Click

Dev. board

EasyPIC v8

Compiler

NECTO Studio

MCU

PIC18LF45K50

Embrace the symmetry of power with our dual-polarity voltage conversion solution

A

A

Hardware Overview

How does it work?

Boost-INV 2 Click is based on the TPS65131, a positive and negative output DC/DC converter from Texas Instruments. Two D/A converters are connected to the positive and negative voltage feedback loop of the TPS65131. The positive and the negative loops are fed into the internal error amplifiers, which compare the feedback voltage with the internal references. They change the duty cycle of the output switching sections to compensate for the differences (errors), affecting the output voltage that way. Incorporating a D/A converter into the feedback loop allows programmed "errors" to be introduced into the loop, allowing control over the output voltage. The TPS65131 IC uses the fixed frequency PWM signal to switch output stages. The internal current limit is about 1950mA for both the inverting and boost converter. The output voltage is clean while running in the continuous conduction mode, with no significant ripple and noise. The complete disconnect of both inverting and boosting converter stages allows no source current to flow through the converter while it is unpowered. This prevents battery draining, allowing the device to use the battery power and providing a split-rail power supply for various applications. Two D/A converters (DAC) labeled as MCP4291, 12-Bit DACs with the SPI Interface by Microchip, are used in feedback loops. One of the DACs is connected

to the MCP6H02 op-amp, configured as the inverting unity gain amplifier. It inverts the polarity of the DAC signal. The feedback voltage of the inverting converter can vary from 0V (Vref) to -15V. Therefore, the DAC signal, which commonly ranges from 0 to +VREF, needs to be inverted. For the boost converter, there is no need to invert the DAC, so its voltage goes up to +VREF. There are two separate CS pins (Chip Select) for these DACs, so both can be programmed independently. Those Chip Select pins are routed to the RST and CS pins of the mikroBUS™ and are labeled as CSN for the negative voltage-controlling DAC and CSP for the positive voltage-controlling DAC. Two more auxiliary ICs are used on the Boost-INV 2 click. One IC is the ADM8829, a switched-capacitor voltage inverter that provides a negative supply voltage for the inverting op-amp. The other IC is the MCP1501, a high-precision buffered voltage reference required for the DACs (4.096 V). The TPS65131 converter IC can be operated in the Power Saving mode. This is very useful for low currents because the device will power itself down as long as the voltage across the output stays above the internally set threshold. When the voltage drops under this threshold, the converter powers up produces several switching pulses that recover the nominal voltage value across the load, and power down again. Depending on the connected

load, it will take more or less time to drain the charge from the inductor. Unlike the normal mode, which operates in the continuous-conduction mode (CCM), the power-saving mode allows the converter to switch between CCM and DCM (discontinuous-conduction) modes. The Click board™ has its PWM pin routed to the PSP and PSN pins of the TPS65131 IC, and the HIGH logic level on this pin will put the IC into the Power Saving mode. The PWM pin of the mikroBUS™ is labeled as the PSM on this Click board™. When the ENP and ENN pins of the TPS65131 IC are at the LOW logic level, the device is completely powered down, disconnecting the loads described above and preventing current leakage through the passive elements of the circuit. These pins are routed to the AN pin of the mikroBUS™ and labeled as EN, allowing the host MCU to control the operation of the Click board™ By default, the input voltage is taken from the mikroBUS™ +5V power rail. An onboard VIN SEL jumper allows selection between the +5V from the mikroBUS™ or an external power supply connected to the screw terminal input, labeled as VEXT. The remaining two screw terminals are negative and positive voltage outputs labeled V- and V+. All three screw terminals share a common GND.

Boost-INV 2 Click hardware overview image

Features overview

Development board

EasyPIC v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports many high pin count 8-bit PIC microcontrollers from Microchip, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, EasyPIC v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the EasyPIC v8 development board contains the components necessary for the most efficient operation of the same board. In addition to the advanced integrated CODEGRIP programmer/debugger module, which offers many valuable programming/debugging options and seamless integration with the Mikroe software environment, the board also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB DEVICE, and CAN are also included, including the well-established mikroBUS™ standard, two display options (graphical and character-based LCD), and several different DIP sockets. These sockets cover a wide range of 8-bit PIC MCUs, from the smallest PIC MCU devices with only eight up to forty pins. EasyPIC v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyPIC v8 horizontal image

Microcontroller Overview

MCU Card / MCU

PIC18LF45K50

Architecture

PIC

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

2048

Used MCU Pins

mikroBUS™ mapper

Chip Enable
RA2
AN
Chip Select (Negative)
RE1
RST
Chip Select (Positive)
RE0
CS
SPI Clock
RC3
SCK
NC
NC
MISO
SPI Data IN
RC5
MOSI
NC
NC
3.3V
Ground
GND
GND
Power Save Mode
RC0
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Boost-INV 2 Click Schematic schematic

Step by step

Project assembly

EasyPIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyPIC v8 as your development board.

EasyPIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
MCU DIP 40 hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
EasyPIC v8 Access DIPMB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Boost-INV 2 Click driver.

Key functions:

  • boostinv2_set_positive_voltage - Functions for set positive output voltage

  • boostinv2_set_negative_voltage - Functions for set negative output voltage

  • boostinv2_generic_transfer - Generic transfer function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief boostinv2 Click example
 * 
 * # Description
 * First increse positiv voltage by 2V every 3 seconda, then 
 * decrese negative value for -2v every 3 seconds.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes Driver init and enable chip
 * 
 * ## Application Task  
 * Changes the positive and negative output voltage. 
 * Positive output voltage goes from 5V to 15V. 
 * Negative output voltage goes from -5V to -15V
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "boostinv2.h"

// ------------------------------------------------------------------ VARIABLES

static boostinv2_t boostinv2;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    boostinv2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    boostinv2_cfg_setup( &cfg );
    BOOSTONV2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    boostinv2_init( &boostinv2, &cfg );
    
    boostinv2_enable( &boostinv2 );   
}

void application_task ( void )
{
     // Positive output voltage 
     log_printf( &logger, "VOUT = 6V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_6V );
     Delay_ms( 3000 );
     log_printf( &logger, "VOUT = 8V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_8V );
     Delay_ms( 3000 );
     log_printf( &logger, "VOUT = 12V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_12V );
     Delay_ms( 3000 );
     log_printf( &logger, "VOUT = 14V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_14V );
     Delay_ms( 3000 );
     log_printf( &logger, "VOUT = 12V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_12V );
     Delay_ms( 3000 );
     log_printf( &logger, "VOUT = 8V\r\n");
     boostinv2_set_positive_voltage( &boostinv2, BOOSTINV2_POS_VOUT_8V );
     Delay_ms( 3000 );
     
     // Negative output voltage 
     
     log_printf( &logger, "VOUT = -5V\r\n");
     boostinv2_set_negative_voltage( &boostinv2, BOOSTINV2_NEG_VOUT_5V );
     Delay_ms( 3000 );
     log_printf( &logger, "VOUT = -7V\r\n");
     boostinv2_set_negative_voltage( &boostinv2, BOOSTINV2_NEG_VOUT_7V );
     Delay_ms( 3000 );
     log_printf( &logger, "VOUT = -13V\r\n");
     boostinv2_set_negative_voltage( &boostinv2, BOOSTINV2_NEG_VOUT_13V );
     Delay_ms( 3000 );
     log_printf( &logger, "VOUT = -7V\r\n");
     boostinv2_set_negative_voltage( &boostinv2, BOOSTINV2_NEG_VOUT_7V );
     Delay_ms( 3000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.