Our temperature measurement solution plays a crucial role in HVAC systems, allowing users to maintain comfortable indoor environments while optimizing energy efficiency
A
A
Hardware Overview
How does it work?
Thermo 2 Click is based on the DS1825, a digital thermometer that provides 9 to 12-bit temperature measurements and communicates over a 1-Wire interface from Analog Devices. The sensor has an extended operating temperature range of -55°C to +125°C, with an accuracy of ±0.5°C over a standard range of -10°C to +85°C, and an alarm function with NV user-programmable upper and lower trigger points. Temperature measurements are sent to the MCU using the 1-Wire interface requiring only one data line that can power the sensor parasitically. A wide span of good qualities makes it ideal for various applications, including HVAC environmental controls, temperature monitoring systems inside buildings,
equipment/machinery, and process monitoring and control systems. This Click board™ communicates with MCU using the 1-Wire interface that, by definition, requires only one data line (and ground) for communication with MCU. The 1-Wire communication line is routed to the GP jumper allowing the 1-Wire communication signal to the PWM pin or the AN pin of the mikroBUS™ socket. These pins are labeled GP0 and GP1, respectively, the same as the SMD jumper positions, making selecting the desired pin straightforward. The DS1825 also features four address select jumpers for setting a unique ID for the sensor allowing up to 16 sensors to operate on a single 1-Wire bus. These address pins, ADR0-
ADR3, are programmed by the user and determine the value of the last four LSBs of the I2C address, which can be selected by positioning onboard SMD jumpers labeled as ADR SEL to an appropriate position marked as 1 or 0. This way, the DS1825 provides the opportunity of the 64 possible different location addresses by positioning the SMD jumper to an appropriate position. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.
Features overview
Development board
PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive
mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI
GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.
Microcontroller Overview
MCU Card / MCU

Architecture
PIC
MCU Memory (KB)
128
Silicon Vendor
Microchip
Pin count
48
RAM (Bytes)
8196
You complete me!
Accessories
Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for Thermo 2 Click driver.
Key functions:
thermo2_write_scratchpad
- This function writes the temperature thresholds and configuration byte to the scratchpad.thermo2_read_scratchpad
- This function reads the scratchpad bytes.thermo2_read_temperature
- This function reads the temperature value in Celsius.
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* @file main.c
* @brief Thermo2 Click example
*
* # Description
* This example demonstrates the use of Thermo 2 click board by reading
* and displaying the temperature in Celsius.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes the driver and performs the click default configuration.
*
* ## Application Task
* Reads and displays the temperature measured by the click board on the USB UART
* approximately every 800ms as this matches the required conversion time for 12-bit
* temperature resolution.
*
* @author Stefan Filipovic
*
*/
#include "board.h"
#include "log.h"
#include "thermo2.h"
static thermo2_t thermo2;
static log_t logger;
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
thermo2_cfg_t thermo2_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
thermo2_cfg_setup( &thermo2_cfg );
THERMO2_MAP_MIKROBUS( thermo2_cfg, MIKROBUS_1 );
if ( ONE_WIRE_ERROR == thermo2_init( &thermo2, &thermo2_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( THERMO2_ERROR == thermo2_default_cfg ( &thermo2 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
void application_task ( void )
{
float temperature;
if ( THERMO2_OK == thermo2_read_temperature ( &thermo2, &temperature ) )
{
log_printf( &logger, " Temperature: %.2f C\r\n\n", temperature );
}
}
void main ( void )
{
application_init( );
for ( ; ; )
{
application_task( );
}
}
// ------------------------------------------------------------------------ END