Intermediate
30 min

Achieve distance and angular measurements for position determination in 3D environments with AK09970N and STM32F091RC

Spin the world with 3D Hall magic!

3D Hall 7 Click with Nucleo-64 with STM32F091RC MCU

Published Feb 26, 2024

Click board™

3D Hall 7 Click

Dev. board

Nucleo-64 with STM32F091RC MCU

Compiler

NECTO Studio

MCU

STM32F091RC

Discover how these sensors can revolutionize navigation, robotics, and beyond, making your devices smarter and more efficient than ever before

A

A

Hardware Overview

How does it work?

3D Hall 7 Click is based on the AK09970N, a low power 3D magnetic sensor from AKM Semiconductor. This sensor relies on a Hall effect to accurately sense magnetic field changes on three perpendicular axes. The internal magnetic field sensing elements are multiplexed and connected to a pre-amplifier and then to a 16-bit low noise Analog to Digital Converter (ADC), which sequentially samples each sensor, providing 16-bit spatial data over the digital interface. The magnetic sensor has a very low pin count. Therefore, SPI and I2C lines are multiplexed on the same pins. In order to allow functionality for both SPI and I2C interfaces, 3D Hall 7 click have onboard jumpers for communication interface selection. Thus, the communication interface selection procedure relies on switching the appropriate SMD jumpers, named COMM SEL. Note that all of the I2C/SPI group jumpers need to be switched at the same side: all three should either be soldered as I2C or SPI. If one of them shows in the opposite position from the rest, the communication with the IC might not be possible. The power consumption is a big concern as of lately, with the introduction of the IoT. The ability to work in a low power mode is a must for every device which is to be used for any type of IoT

networking. The AK09970N magnetic sensor features power down mode, single measurement mode and seven continuous measurement modes, allowing the user to make a perfect balance between sampling frequency, measurement accuracy and power consumption. The power consumption is in a close relationship with the data output refresh rate (ODR). The AK09970N magnetic sensor also features a powerful programmable interrupt engine, which allows many event sources to be signaled via the two interrupt pins (INT and ODINT), which are routed from the sensor to the mikroBUS™ INT and AN pins respectively. A very useful function of the interrupt engine is the signaling of the data ready event. That way, the host MCU does not have to poll the sensor for the data acquisition. The sensor can simply trigger an interrupt when the data is ready for reading. The interrupt engine allows some other customizations of the interrupt signal, such as the magnetic sensor overflow, ADC overflow and Switch event. The sensor provides raw data output, based on a strength of the magnetic field. The measurement is affected by many factors: slight manufacturing differences between ICs affect the readings, even the slight differences between Hall plates within the same IC

might affect the accuracy, although the IC contains highly matched sensing elements. Also, the altitude might affect the readings, as well as temperature changes. Therefore, the IC is equipped with the temperature independent reference voltage, thus minimizing the influence the mentioned unwanted factors. The power mode, output data rate, interrupt thresholds for each axis, and other working parameters, including the availability of the I2C interface, are contained within the configuration registers of the AK09970N magnetic sensor. The sensor is highly configurable, with many configuration options. The AK09970N datasheet contains an in-depth explanation of all the registers and their functionality. However, 3D Hall 7 software library contains simplified functions that allow straight-forward readings to be performed, reducing the steps needed for a proper initialization and configuration of the device. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

3D Hall 7 Click top side image
3D Hall 7 Click bottom side image

Features overview

Development board

Nucleo-64 with STM32F091RC MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32F091RC MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

256

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

32768

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

Interrupt 2
PC0
AN
Reset
PC12
RST
SPI Chip Select
PB12
CS
SPI Clock
PB3
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt 1
PC14
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB8
SCL
I2C Data
PB9
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

3D Hall 7 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo-64 with STM32F091RC MCU as your development board.

Click Shield for Nucleo-64 front image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
EEPROM 13 Click front image hardware assembly
Prog-cut hardware assembly
Nucleo-64 with STM32XXX MCU MB 1 Mini B Conn - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for 3D Hall 7 Click driver.

Key functions:

  • c3dhall7_get_axis_data - Get Axis data function

  • c3dhall7_get_status - Measurement status function

  • c3dhall7_get_status - Measurement status function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief 3dHall7 Click example
 * 
 * # Description
 * Read the position of magnetic
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes driver init, test communication and configuration device for measurement.
 * 
 * ## Application Task  
 * Reads 3 Axis of the magnetic sensor and logs this data to USBUART every 500ms.
 * 
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "c3dhall7.h"

// ------------------------------------------------------------------ VARIABLES

static c3dhall7_t c3dhall7;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init (  )
{
    c3dhall7_dev_info_t info;
    uint8_t red_data;

    log_cfg_t log_cfg;
    c3dhall7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c3dhall7_cfg_setup( &cfg );
    C3DHALL7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c3dhall7_init( &c3dhall7, &cfg );
    
    c3dhall7_device_reset( &c3dhall7 );

    // Test communication 
    c3dhall7_device_info( &c3dhall7, &info );
    if ( info.device_id == C3DHALL7_DEVICE_ID )
    {
        log_printf( &logger, "---- Communication [ OK ]!!! ----\r\n" );
    }
    else
    {
        log_printf( &logger, "---- Communication [ ERROR ]!!! ----\r\n" );

        for ( ; ; );
    }

    // Configuration 
    c3dhall7_default_cfg ( &c3dhall7 );
}

void application_task ( void )
{
    c3dhall7_axis_t axis;

    c3dhall7_get_axis_data( &c3dhall7, &axis );
    
    log_printf( &logger, "---- Measurement data of magnetic sensor ----\r\n" );
    
    log_printf( &logger, "X axis: %d \r\n", axis.x );

    log_printf( &logger, "Y axis: %d \r\n", axis.y );

    log_printf( &logger, "Z axis: %d \r\n", axis.z );
    
    log_printf( &logger, "---------------------------------------------\r\n");
    Delay_ms( 500 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.