From binary to brilliance, our DAC technology takes your digital inputs and transforms them into tangible outcomes
A
A
Hardware Overview
How does it work?
DAC 3 Click is based on the MCP4726, a 12-bit voltage output digital-to-analog converter with EEPROM from Microchip. The MCP4726 uses a resistor ladder architecture with an analog output provided on the VOUT screw terminal. The VOUT can swing from approximately 0V to approximately VCC voltage, in the case of this Click board™, 3.3V and 5V. The resistor ladder DAC is driven from a software-selectable voltage reference source. The reference voltage can be selected between the VCC and the 4.096V given by the MCP1541 via the REF SEL jumper. The VCC
on this jumper is selected by default and depends on the voltage selection over the PWR SEL jumper, with 3.3V set by default. To communicate with the host MCU, the DAC 3 Click uses the I2C interface over the mikroBUS™ socket for standard (100KHz), fast (400KHz), or High-Speed (3.4MHz) mode. The 16-bit data is sent to the DAC through the I2C interface. This interface is also used to store desired Power-on Reset (POR)/Brown-out Reset (BOR) values of the DAC register and device configuration bits. During operation, the internal POR/BOR circuit monitors the power supply
voltage (VCC) and ensures the correct device Start-Up sequence at system power-up and power-down events. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the PWR SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.
Features overview
Development board
Fusion for TIVA v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different 32-bit ARM® Cortex®-M based MCUs from Texas Instruments, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over a WiFi network. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for TIVA v8 provides a fluid and immersive working experience, allowing access
anywhere and under any circumstances at any time. Each part of the Fusion for TIVA v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.
Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for TIVA v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.
Microcontroller Overview
MCU Card / MCU

Type
8th Generation
Architecture
ARM Cortex-M4
MCU Memory (KB)
1024
Silicon Vendor
Texas Instruments
Pin count
128
RAM (Bytes)
262144
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for DAC 3 Click driver.
Key functions:
dac3_write_all_mem
- This function configures the click moduledac3_send_command
- This function sends a command to the click module using SPI communicationdac3_set_out_voltage
- This function sets the output voltage on the click module terminal.
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* \file
* \brief DAC3 Click example
*
* # Description
* This example showcases how to initialize, configure and use the DAC 3 click module. The click
* performs digital to analog conversion and the output voltage can be read on the output termi-
* nal using a multimeter. An oscilloscope is required to read the analog signal.
*
* The demo application is composed of two sections :
*
* ## Application Init
* This function configures and initializes the click and logger modules. The write_all_mem(...)
* function configures DAC settings.
*
* ## Application Task
* This function resets and wakes up the click module and then changes the output voltage on the
* output terminal a few times in a loop with a 5 second delay. It does so every 1 second.
*
* \author MikroE Team
*
*/
// ------------------------------------------------------------------- INCLUDES
#include "board.h"
#include "log.h"
#include "dac3.h"
// ------------------------------------------------------------------ VARIABLES
static dac3_t dac3;
static log_t logger;
// ------------------------------------------------------ APPLICATION FUNCTIONS
void application_init ( )
{
log_cfg_t log_cfg;
dac3_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
dac3_cfg_setup( &cfg );
DAC3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
dac3_init( &dac3, &cfg );
dac3.dac_cfg.vrl = 0;
dac3.dac_cfg.power = 0;
dac3.dac_cfg.gain = 0;
dac3_write_all_mem( &dac3, 0 );
Delay_100ms( );
}
void application_task ( )
{
uint8_t cnt;
uint32_t output_value;
output_value = 500;
dac3_send_command( &dac3, DAC3_RESET );
Delay_100ms( );
dac3_send_command( &dac3, DAC3_WAKE_UP );
Delay_100ms( );
for ( cnt = 1; cnt < 9; cnt ++ )
{
dac3_set_out_voltage( &dac3, output_value * cnt );
log_printf( &logger, " .current DAC value: %d\r\n", output_value * cnt );
log_printf( &logger, " .output voltage: %d mV\r\n", ( ( output_value * cnt ) * 79 ) / 64 );
log_printf( &logger, "-------------------------------\r\n" );
Delay_ms( 5000 );
}
log_printf( &logger, "###############################\r\n" );
Delay_1sec( );
}
void main ( )
{
application_init( );
for ( ; ; )
{
application_task( );
}
}
// ------------------------------------------------------------------------ END